Heegner Points and the Rank of Elliptic Curves over Large Extensions of Global Fields
نویسنده
چکیده
Let k be a global field, k a separable closure of k, and Gk the absolute Galois group Gal(k/k) of k over k. For every σ ∈ Gk, let k σ be the fixed subfield of k under σ. Let E/k be an elliptic curve over k. We show that for each σ ∈ Gk, the Mordell-Weil group E(k σ ) has infinite rank in the following two cases. Firstly when k is a global function field of odd characteristic and E is parametrized by a Drinfeld modular curve, and secondly when k is a totally real number field and E/k is parametrized by a Shimura curve. In both cases our approach uses the non-triviality of a sequence of Heegner points on E defined over ring class fields.
منابع مشابه
Heegner points, Stark-Heegner points, and values of L-series
Elliptic curves over Q are equipped with a systematic collection of Heegner points arising from the theory of complex multiplication and defined over abelian extensions of imaginary quadratic fields. These points are the key to the most decisive progress in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of analytic rank ≤ 1...
متن کاملHigher Heegner points on elliptic curves over function fields
Let E be a modular elliptic curve defined over a rational function field k of odd characteristic. We construct a sequence of Heegner points on E, defined over a Zp -tower of finite extensions of k, and show that these Heegner points generate a group of infinite rank. This is a function field analogue of a result of C. Cornut and V. Vatsal.
متن کاملHeegner points and elliptic curves of large rank over function fields
This note presents a connection between Ulmer’s construction [Ulm02] of non-isotrivial elliptic curves over Fp(t) with arbitrarily large rank, and the theory of Heegner points (attached to parametrisations by Drinfeld modular curves, as sketched in section 3 of the article [Ulm03] appearing in this volume). This ties in the topics in section 4 of [Ulm03] more closely to the main theme of this p...
متن کاملExplicit Heegner Points: Kolyvagin’s Conjecture and Non-trivial Elements in the Shafarevich-Tate Group
Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over Q and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin’s conjecture. More precisely, we explicitly compute Heegner points over ring class fields...
متن کاملElliptic Curves and Analogies Between Number Fields and Function Fields
Well-known analogies between number fields and function fields have led to the transposition of many problems from one domain to the other. In this paper, we discuss traffic of this sort, in both directions, in the theory of elliptic curves. In the first part of the paper, we consider various works on Heegner points and Gross–Zagier formulas in the function field context; these works lead to a ...
متن کامل